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Abstract
Temporal leakage occurs when the time-domain resgpoha linear electromagnetic system is computed
from frequency-domain data using the inverse discF@urier transform. Although the temporal leakage
occurs in most practical cases, this phenomenonnas recognized in the literature covering

electromagnetics, antennas, and microwaves. Thaoperof the paper is to demonstrate and explain the
temporal leakage.
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1. Introduction

Various linear time-invariant electromagnetic sgsteare most conveniently analyzed in the frequency
domain because there exist mature computationahigaes (e.g., [1]) and related software (e.g.3[2,
Also, most measurements of antenna and microwastersg are performed in the frequency domain (using
vector network analyzers), yielding a discrete (fefrequency-domain data. In order to obtain timeeti
domain response of such systems, the inverse ths€oairier transform (inverse DFT) is often used.(e
[4]), which is implemented as a fast Fourier transf (FFT) algorithm. In the application of the DFan
apparently noncausal response can be obtainecdeinirtte domain, in spite of careful modeling in the
frequency domain or carefully calibrated measurdamerhis unexpected response appears in the form of
fast oscillations that occur before a sharp edgbephysically meaningful time-domain response.

The same problem also occurs in the analysis atretal circuits. An example is shown in Fig. 7 of
[5], where the noncausal oscillations are mistakexttributed to the Gibbs phenomenon. However, the
problem is actually associated with an inherentuieaof the DFT, which is referred to as the “temgbo
leakage” [6-11]. This phenomenon is mentioned omy very few references, away from the
electromagnetic community, although its counterpghg “spectral leakage”, is extensively elaborateithe
literature (e.g., [12, 13]).

The purpose of this paper is to show some typieakes where the temporal leakage occurs in the
electromagnetic analysis and measurements, and rgathematical explanation of the phenomenon.
Consequently, in Section 2 the discrete Fourierstiaam is briefly revisited, in Section 3 the mattatical
background of the temporal leakage is elaborated i Section 4 several examples are given illtisiga

this phenomenon.

2. Discrete Fourier Transform
The DFT can be introduced by considering a periséiguence of equispaced Dirac’s delta-functions
(impulses) in the time domaim(t) , andexactlyevaluating the corresponding Fourier transformictvis
also a periodic sequence of equispaced impulses.pfdof is given below. This approach is somewhat
unusual, but it is useful for explaining the tengddeakage and some other peculiarities of the DFT.
Consider a sequence ®™ impulses in the time domain (temporal functiona), time instants
0, Dt,2Dt,...,(N - 1)Dt, where Dt is the time step and\NDt =T . The amplitudes of the impulses are

Xy, X5--» Xy.1 - THiS sequence is periodically repeated with oo T. Mathematically, this sequence can

be defined on the interv@l£t <T as
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N

X ()= x,dt- nDt), 1)

n=0
and then it is periodically repeated usindt +1T) = x, (t), wherel is an arbitrary integer. Alternatively, we

can write
+¥

()= %, dlt- nDt), X =X, )
F -¥

The sequencex,(t) can also be represented in terms of the comb iamcas follows. The comb

function is a periodic train of impulses, with theriodT:

D, (t) = " dlt- mT). 3)

I -¥

The function x,(t) can be expressed as a sum of interleaved combidoagcwhich are shifted fonDt,

n=0,.,N-1,as

N-1

x(t)= %, Dr(t- nDt), (4)

n=0
where each comb function is multiplied (weighteg)»y.

We now evaluate the Fourier transform (Fouriergra8 of x,(t). Since D, (t) is a periodic function, it

can be expanded in the Fourier series. The coefigiof the series ag :? dt)e T dt :?, where
-TI2

T2 _2pjkt

+¥  2pikt

kis an integerki (- ¥,+¥), and j is the imaginary unit, so tha (t) :% e T . On the other hand, the
ke -¥

2pikt
Fourier transformoe 7 isd f - ; . Hence, the Fourier transform Bk (t) is

1+¥ k +¥
— df-= =Df d(f-kDf)=Df Dy(f), (5)

T T e ¥

where Df :%. It is also a comb of delta-functions, but in thgectral (frequency) domain, with the

spectral-domain perio@f .

The Fourier transform of each comb function inddh be obtained from (5) by using the shift theqrem

+¥ +¥ o kn
ie., it is given by Df Dy(f)e?™™ =Df d(f - kDf)e?™™ =pf d(f - kDf)e "N because

ke -¥ F ¥
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d(f)g(f)=d(f)g(0), whereg(f) is an arbitrary function defined &t=0 and continuous af =0, and

-kn

—e "N pecausdtDf = %

-2 pkDinDt
e n

By summing the Fourier transforms for all comb fumas, a sequence of weighted delta-functions in

the spectral domain is obtained. Thereby, each adefiction is multiplied by

1Nt 2 N1 oplkeNn ke

_ _ . o ol

X=T xe N=Df xe , kT (- ¥,+¥). Sincen is an integer, we have =e N, s0
n=0 n=0

that X, is a periodic sequence of complex numbers, withldhsic period\. Hence, it is sufficient to
consider X, only on the basic period, i.e., fér=0,...,N - 1, in the same way as it is sufficient to consider

x, only forn=0,1,...,N - 1.

N-1 pjlk N-
Following a similar derivation, we can show that=Dt X, e —ﬁ X e
k=0 k=0

PJ ~N

Hence, we have obtained formulas for the physidahdrmalized) discrete Fourier transform (DFT)

and the corresponding inverse discrete Fouriestoam (IDFT):

_kn

N-1 2pi
X, =Df x,e N,k=041..,N-1, (6)
n=0
N N n=021..,N-1 @)
NDf o k ey .

These transforms relate the amplitudes of a perisdguence of impulses in the time domaip)(to the
amplitudes of a periodic sequence of impulses enftquency domainX, ). Note that relations (6) and

(7) areexact and that the sequences of pulses in both doraagnimfinite and periodic.

The normalized forms of the DFT and IDFT are olediby artificially takingDf =1 (also neglecting

the units), so that

N-1 zp]@
X.= xe N k=01.,N-1, (8a)
n=0
N-1 Nk
=1 €™ k= 01.,N-1. (8b)
N k=0

The normalized forms are practically the only oftesd in the literature, and the available FFT atgms
are based on (8a) and (8b). From now on in thiepape consider only the normalized forms.

If (1) represents a physical time-domain signagntthe amplitudes¢,, x ,..., X,., are real numbers.

The corresponding spectrum has a conjugate symniédinyce, the infinite sequence of complex numbers
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{Xk} has a conjugate symmetr¥t_, = X, for any integek. AssumingN to be even, due to the periodicity

of {X,}, this sequence on the basic period looks as fetlow

{XO’Xl’ ’XN/2-1’XN/2’XN/2+17 ’xN-l}:{XO’Xl’ ’XN/2-1’XN/2’X;11/2-1’ ’XI} (9)
The termsX,,,, and X, are purely real due to the conjugate symmetr{>f}. If N is odd, the middle

(purely real) term in this sequence does not efigt X, is still purely real.

Hence, when analyzing or measuring an electromegsystem in the frequency domain and evaluating
the time-domain response using the IDFT, one shondderly define the sequen{:ﬁk} in (8b) in order to
obtain real-valued elements of the sequeficd. The first part of{X,} is taken from the computed or
measured data, and the second part is defined bask@ conjugate symmetry, as in (9).

In practice, the basic application of the normalipdT is toapproximatelyevaluate the spectrum of a
real, continuous-time, nonperiodic signdt). The signalx(t) might be an electric field, voltage, current,
etc. In numerical applications, we can deal onlhvie values of the signal at a finite number istigtte
time instants.

This application of the DFT can be introduced i tways. One way is to deal with the samples of the
original continuous-time signal and the other wayoi replace the original signal by a discrete-tgigmal.

In both cases, we assume that the signal is altimostimited to the intervati [0,T).

Following the first approach, we take the samplggn@l values) afN equispaced time instants,

t, =nDt, n= 0,1...,N-1, i.e., we takex, = x(nDt). We approximate the Fourier integral x{f) by a sum

+¥ ) T ) N-1 .
of “rectangles”, i.e., x(t)e®"dt» x(t)e®dt» xnDt)e?"™Dt. We further assume that the
- ¥ 0 n=0

spectrum ofx(t), X(f), is almost frequency-limited to the intervali O,% and we consider this

spectrum only at discrete frequenciés = kDf :$, k=01..,N/2-1 (for N even). Knowing that the

spectrum has a conjugate symmetry, we thus eftdgtoonsidemN discrete values of the spectrum. Since

N-1 _oyikn
fknDt=an, we obtain X(kDf)»Dt x(nDt)e "N. This sum is the normalized DFT, so that

n=0
X(kDf) »DtX, . Note that to obtain a proper approximation of Hpectrum, we need to perform the

multiplication by Dt .
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N-1 Nk
Using the normalized IDFT, we obtain the values in a similar way asx(nDt) »Df X, e
k=0
Hence, x(nDt) » NDfx, . Note thatNDtDf =1, so that this product is absorbed in the sequehtee direct
and inverse DFT

Assuming thatN is even, the spectral componerXs, X, ,..., X, ,,.; approximate the values of the

spectrum X(f) of the signal xt) at a set of discrete frequencies, i.eXk:éX(kDf),

n=01..N/2-1.
According to the second approach to using the D&Bgproximately evaluate the spectrum of the

signal x(t), we replace the continuous-time signdd) by the discrete-time signad, (t) = x (t)Dt, where
xdr(t) is given by (1). The need for multiplication By can be justified in two ways. First, the unit the
delta-functiond(t) is s'*, so that we have to restore the original unitther signalx(t). Second, we want
x(t) and x,(t) to have approximately identical spectra, so t{gk and x,(t) should have practically equal

integral$ over any interval whose length Bt. Following this approach, upon evaluating the kur

integral, we again obtain the spectral samplesetc((kDf ) » DtX, .

In conclusion to this section, we point out thae DFT is anexacttransform that maps a periodic
sequence of impulses in the temporal domain inpereodic sequence of impulses in the spectral domai
However, when used to analyze a continuous-timeasigor a function whose temporal samples are
known), the DFT onlyapproximatelyevaluates spectral samples of such a signal. &isithe IDFT only
approximately evaluates temporal samples of a fomavhose spectral samples are known. Thereby, we
perform discretization both in the time domain amdhe frequency domain. Hence, by applying the DFT
we alwaysintroduce an aliasing error because a continuimus-function cannot be limited both in the time
domain and in the frequency domain. However, if kv@w that the function under consideration is

practically limited to the time interva(0,t, ) and alsgractically limited to the frequency rand@, f. . ),

the application of the DFT/IDFT yields useful resul

! Some FFT algorithms use identical formulas fordirect and inverse FFT, apart for a sign change in
the exponent. In such cases, the inverse DFT dutdaciude the division biX, so thatx(nDt) » Dfx. .

% Note that d(t)dt =1 for anye>0.

-e
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Care should also be taken when applying the DFihéoanalysis of high-frequency electromagnetic
problems, which always involve a delay. If the getxceeds the periotl and/or if the response does not
settle down to zero fast enough, the response @roetime window will penetrate into the subsequiené
window, which will appear as a wrap-around of thsponse. A particular example where this periodicit
causes trouble is the evaluation of the step respdthe response to the Heaviside function). When
applying the DFT, the Heaviside function must @laeed by a rectangular pulse, which jumps frora 0 t
at the beginning of the time window and returngeoo around the middle of the same time window. The
duration of the time window must be sufficient tbow the response to practically vanish within this

window.

3. Temporal Leakage

The simplest, yet illustrative case where one catnagquainted with the temporal leakage is a delay
line. Such a line can be a model of an ideal mat¢hensmission line. If the line is excited by ampulse

located att =0, i.e., byd(t), and if the delay i¢ , the signal at the output of the line is givendft t).
The objective is to evaluate this response usiagititrmalized DFT. Since it is assumed that the |sgis
located att =0, we havex, =1, x, =0, n=1..,N- 1. We assume thad<t <(N - 2)Dt. Applying (8)
yields the frequency-domain samples, =1, k= 0,1...,N - 1. Next, the delay is expressed tas pDLt
(0<p<N-1) and this delay is simulated in the spectral donigi multiplying X, by exg- 2pjkp/N),
k=0,.,N/2-1. (This simulation mimics the analysis of an elegtagnetic system or a circuit in the
frequency domain.) The sampl¥,,, is peculiar because it must remain purely realndde X, is
multiplied only by Relexp(- pjp)}. The remaining samples, fér= N/2+1,...,N - 1, are filled according

to (9). Thereatfter, the inverse normalized DFT (8gpplied.
If p is an integer, a clean response is obtained WAPLAB [14], as shown in Fig. 1 forp =150. If

this is not the case (e.go,=3005), the response contains oscillations (tempor&idga).

The temporal leakage can be explained by analltieshluating the sum in (8b). Due to the conjugate

symmetry in the spectral domain, one can write
Na
2 - |

=L jiRe ev¥e
N k=1

201, 200
N

" +rde@iro) (10)

After summing the series in (10) and some manipriat given in the Appendix, the result becomes
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« _ 1 sinNpa
" N tarpa '

where a :%. Consideringx, as a function ofa, it has a global maximum fax = 0. This maximum

(11)

is 1.

I Fexcitation =150
0.8F
p=300.5
0.6fF
Xn
04F
0.2f
[
$
)
0
n: 302
Xp—0.2122
-02F ]
—04 ! 1 ] ! ! ]
0 100 200 300 400 500 600
n

Fig. 1. Impulse excitation of a delay line and poted response (foN =512) when p=150 and
p=3005.

However, p is an arbitrary given constant, whergass an integer. Hence, the global maximum can be

attained only if p is also an integer, when the maximum occursrferp (x, =1). In that case, all other

samples arex, =0, n=0,...,N- 1, n* p, and a clean response is obtained, which is anlsaplelayed for
t = pDt after the excitation. Ifp is not an integer, the temporal leakage occurseMéh<<1, i.e., in the
vicinity of the delayed impulsdar pa » pa, so that

_ sinNpa _ sinp(n- p)

Npa  p(n- p)
The largest sample is the one whose indexs closest top, but now x, <1. The largest leakage

=sindn- p). (12)

n

occurs if p=m+ 05, wherem is an integer. In that case, there are two largastples, whose value is,
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approximately,% » 0.6366. They are surrounded by two negative samples whalse is, approximately,

- 3£» - 0.2122, which can be verified in Fig. 1.
p

The temporal leakage can also be explained inath@fing way. Let us consider the sequence (8b). If
we want to delay this sequence for all spectral componentX, , ki ( ¥,+¥), must be multiplied by
ex;:(— 2pjft). This multiplication modifies only the phase ¥ (Fig. 2), by reducing it bypft , which is
plotted by the line denoted “natural”. However tive general case, the resulting spectral comportents
not form a periodic sequence any more.

When we apply the DFT to evaluate the delay, we ifwoithe phases of only the samples for
k=0,...,N - 1, which belong to the basic spectral interval.Rig. 2, it is assumed thatd =8.) This phase
shift is denoted by “DFT basic interval”’. Thereafteve periodically repeat the samples from thisidbas
interval. Consequently, the phase shift is peraticrepeated as denoted in Fig. 2 by “DFT perialiyc
repeated”. Note that the phase shift of the samfgek =-N/2+1...0,...,N/2- 1 coincides with the

natural phase shift.

natural A phase shift
2n —
shifted for
2n T~ DFT DFT
/ basic periodically
jump interval repeated
S S N . (S . N N A
-8 -6 -5 -4 -3-2-1 2 3 45 6 7 8 10 11 121314 15
DFT A ium
periodically J. P
repeated " | ‘s‘
S shifted for
N
21 —
)
S perfect
‘Q
=3t — *
L)
e

Fig. 2. lllustration of phase shifting when usiDET, which causes the temporal leakage.
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Modifying the phase shift by an integer multiple2§ does not change anything. Hence, we can try to
overlap the DFT phase shift with the natural phstsé. (In the example shown in Fig. 2, the attesolpt
shift is 2p, viz. - 2p.) In the general case, the overlapping will notplessible and phase jumps would
occur, as illustrated in Fig. 2. These jumps aeestburces of the temporal leakage.

The only exceptions are cases when the naturakpiat at the sampl&l is an integer multiple o2p
(i.e., the delayt is an integer multiple oft). In that case, the result obtained using the BKfibits a

perfect delay. An example is the natural delayldbéperfect” in Fig. 2.

4. Examples

As the first example in this section, Fig. 3 shaws response of a delay line to a rectangular pulse
whose width is50D0t. The temporal leakage occurs around the pulsesedigee delay is not an integer

multiple of Dt . In the response fop = 3005, interference occurs between the ringings gengaténe two

transients, due to a small pulse width. If the @udssufficiently wide, the interference would keghgible.

The maximal overshoots and undershoots occur wperm+ 04 or p» m+ 06, and they amount to

about 14% of the edge height. Note that the osicifla associated with the Gibbs phenomenon arengive
terms of the sine integral function [15]. The réisigl undershoots and overshoots at the transientédvbe
about 9% of the edge height, i.e., smaller thasehmssociated with the worst-case temporal leaKdge.
temporal leakage and the Gibbs phenomenon looKasintiut they have different causes. The temporal
leakage arises due to the discretization of a soatis signal, while the Gibb's effect arises dukending

the bandwidth of the signal.
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1.2

n:301 m
X, 1.14 . ' =300.
] excitation 5 p=3005

0.8 +

I
—_

0.6
Xn
0.4+

0.2+

H

—0'2 | 1 1 | | J
0 100 200 300 400 500 600

n

Fig. 3. Rectangular-pulse excitation of a delag land computed response (fdr=512) when p =150

and p=3005.

As the next example, we consider two wire antens@garated by a distance of 2.1 m. The measured

and simulated structure consists a225mm long folded dipole, which acts as a transmittingeana (Tx),
and eight80mm long monopoles placed along the diagonal oflani 1m aluminum plate (Fig. 4). The
first dipole acts as the receiving antenna (Rx)ilevthe other 7 monopoles are terminatedbBW loads
[16]. The response was obtained by calculatingsitegttering parametes,, using WIPL-D [3] and by
measurings,, (in the frequency domain) using a vector netwar&lygzer and performing the IDFT. Fig. 5a

shows the impulse response. The noncausal ringaoged by the temporal leakage (ftox 7.1ns) is
significantly reduced if the separation betweenahgnnas is increased by just 25 mm (Fig. 5b)esihis

increase accidentally introduces a proper additibme delay and the corresponding phase shift.
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H Port 1 (Tx)

Port 2 (Rx)
I m

I m
Fig. 4. Analyzed system with two antennas 2.1 artap
2.0 T T T F 'I T T T T
] Pt — — -Measured
154 ' Simulated |
‘?2 1.0 :
Z ]
v 0.5
8 1 7
2 004
Z 00 )
. ]
= —0.51
(=9
g ] y
-1.04 \ l"I .
4 ]
_15 T T T f T T T T
0 3 6 9 12 15 18
t [ns]
(a)
20 T T T T " T T T T
] \ — — -Measured
1.5 .'l —— Simulated |

1.0

0.54

|
o
(9]
1

Impulse response [x 1043]
o
(e

|
—
je]
T

|
—
W
.
-
=

(=]
W
o)}
Ne)
¥
O
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t [ns]
(b)
Fig. 5. (a) Impulse response of two antennas showkig. 4 and (b) the response when the distance
between the antennas is increased by 25 mm.
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Finally, Fig. 6a shows the measured and simulated sesponse of a differential-mode fast digital-
signal link. The link encompasses three multilagented-circuit boards and corresponding connectors
The simulated response was computed in the frequimmain using the model of the dielectric paramsete
[17] along with the model of the per-unit-lengttsistance and inductance [18], which guarantee satau
response. The latter model includes the edge effeetproximity effect, the skin effect, and théeet of
surface roughness. The model of the link also ohedudiscontinuities at the connectors. First, theulse

response was evaluated using the IDFT of the stajtparameters,; (involving frequency samples up to

about 3 GHz), followed by a convolution to obtalre tstep response. Even after the convolution (which
introduces smoothing), oscillations due to the terapleakage persist in the response (Fig. 6b).pEn®d
of the oscillations equals twice the time step usedomputations. The oscillations are clearly lvesi
before the propagated step occurs. Thereafter,ateeplended with oscillations due to multiple eeflons

on the link.
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1.0

0.8

— — -Measured

0.6
—— Simulated

2. 0.4
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40‘_ — — -Measured
304 — Simulated

_50 ] T T T T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5
t [ns]

(b)

15

Fig. 6. (a) Step response of a fast digital-sigm#t and (b) zoom-in showing ringing due to tengdor

leakage.

By the above examples, we have demonstrated tleatetmporal leakage appears in results of

numerical simulations and in measurements usingovatetwork analyzers (which is true both if the
analyzer has a built-in time-domain option andhé tIDFT of the scattering parameters is performed

externally).

The effects of the temporal leakage are artifacthe time-domain response, which occur around

fast transitions of the response. The artifactsqaisi-oscillatory, their period equals twice theet step,
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and their amplitudes decay slowly away from thengittons. The oscillations occur not only after a
transition, but also prior to it, so that an app#genon-causal response of a causal system isnelota

In the worst-case scenario, the maximal effecheftemporal leakage can be as high as 21% of the
impulse response (Fig. 1) and 14% of the step respor the pulse response (Fig. 3) for low-lossedhd
systems (such as a simple transmission line). Hergpractical cases, however, the effect of thepteal
leakage is usually smaller (Figs. 5 and 6), dependn the bandwidth of the system and the spectium
the time-domain excitation.

The temporal leakage is less pronounced in systathsdispersion (e.g., a lossy transmission line)
because sharp transitions cannot occur in sucts.ceaehermore, the temporal leakage can be kepbio
shaping the excitation functions appropriately,,eby applying a Gaussian pulse, which is ofterduse
find figures of merit for time-domain radiators [13]. In such cases, the amplitudes of the osicila due
to the temporal leakage are on the order of a feregnt of the actual response or even less, sahbat
temporal leakage is often blended with oscillatidog to other causes. Note, however, that in s@sesc
the impulse response is indispensable (e.g., whaluaing responses by convolution and when modelin
nonlinear systems [21]), when the response to Bimdelta-function cannot be replaced by the respdas
the Gaussian pulse.

The temporal leakage can be practically eliminated system whose response is affected by a
single physical time delay (e.g., a single-pathgmission between two matched antennas). In suelse
the number of frequencies and/or the frequencyat&ghich the response is measured or computedomay
changed with the aim to make this delay equal tonteger multiple of the time step. For example,caa
freeze the frequency step and change the uppeardneg used in the computations by changing the tota
number of samples. A peculiarity of this procedisr¢hat the temporal leakage will periodically dsase
and increase as the number of samples is changeudeudr, in the general case, i.e., when the syggem
characterized by two or more non-commensurate tielays (e.g., a multipath transmission between two

antennas or a microwave circuit with several reitecpoints), the temporal leakage will always besent.

5. Conclusions

This paper explained and demonstrated the tempeakbge. First, we mathematically explained why
the temporal leakage occurs. We also showed thanwapplying the discrete Fourier transform, an
apparently noncausal response can be obtaineceinirtte domain, in spite of careful modeling in the
frequency domain. Finally, we presented some typieses where the temporal leakage occurs in the

electromagnetic analysis as well as in measurements
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Appendix
We derive here equation (11). We start from (10)d asum the geometric series as
2pj N
2 2Pl 2y 2Pl ) e% 2ty i
e eV =eV ———————. We extract from the numerator the terl 2 leaving
k=1 W("' p)
€ -1
BNy e BNy -
e ? -eN? :2jsinﬂ-1m.
2 N
- . Bnp) o Bp) Py p(n- p)
Similarly, from the denominator we extract the tegth leaving eM -eN = 2jsin N
- N_. p(n- p)
s, m, SN 5Tl
Hence, the sum becomese N eN =e? . Substituting this sum into (10) and
- sinP(n- p)
N
1 sin N, 1 pa
settingn'— =a yields x, =— 1+2cos—pa ———— +cosNpa
N N sinpa
. . . . . " Npa
Finally, using the trigonometric identities 1+ cosNpa = 2cos Y and

sin % 1pa= sin% pa cospa - cos% pa sinpa , equation (11) is obtained.
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