10. Холографија

10.1. Увод

Холографија је техника инверзног расејања код које се облик објекта одређује помоћу Фуријеове трансформације мерења [11]. Прилагођена је за случај планарних антенских низова, те се користи, између осталог, за скенирање путника на аеродромима.

Слика 1. Мерна поставка за добијање холографске слике.

10.2. Полазне једначине

Поједностављен изглед мерног система који се користи за добијање холографских слика приказан је на слици 1. Систем се састоји од једне предајне и једне пријемне антене које се налазе у ваздуху. Антене се истовремено крећу по паралелним површима S_1 и S_2 тако да је растојање између њих константно.

У општем случају, пренос између антена услед присуства објекта пропорционалан је интегралном изразу

$$\Delta s_{12}(\mathbf{r}_{r}) \propto \int_{\nu} j\omega \left(\varepsilon(\mathbf{r}') - \varepsilon_{0} \right) \mathbf{E}_{inc} \left(\mathbf{r}'; \mathbf{r}_{r} \right) \cdot \mathbf{E}_{tot} \left(\mathbf{r}'; \mathbf{r}_{t} \right) d\nu, \qquad (1)$$

где је **r**' вектор положаја тачке у испитиваном објекту, **r**_t вектор положаја предајне антене, **r**_r вектор положаја пријемне антене, **E**_{inc} вектор електричног поља који настаје без присуства објекта, **E**_{tot} вектор електричног поља који настаје у присуству објекта и ε пермитивност објекта.

У посматраном примеру, антене су паралелне x-оси, те је доминантна компонента електричног поља x-компонента. У том случају (1) постаје

$$\Delta s_{12}(\mathbf{r}_{\rm r}) \propto \int_{\nu} j\omega(\varepsilon(\mathbf{r}') - \varepsilon_0) E_{\rm inc, x}(\mathbf{r}'; \mathbf{r}_{\rm r}) E_{\rm tot, x}(\mathbf{r}'; \mathbf{r}_{\rm t}) d\nu, \qquad (2)$$

где су $E_{\text{inc},x}$ и $E_{\text{tot},x}$ пројекције комплексних вектора \mathbf{E}_{inc} и \mathbf{E}_{tot} на *x*-осу, респективно.

Уколико је испитивано тело слаб расејач, једначина расејања се даље упрошћава применом Борнове апроксимације

$$\Delta s_{12}(\mathbf{r}_{\rm r}) \propto \int_{v} j\omega(\varepsilon(\mathbf{r}') - \varepsilon_0) E_{\rm inc, x}(\mathbf{r}'; \mathbf{r}_{\rm r}) E_{\rm inc, x}(\mathbf{r}'; \mathbf{r}_{\rm t}) dv.$$
(3)

У координатном систему са слике 1, позиције предајне и пријемне антене су (x', y', 0) и (x', y', D), респективно, док је позиција произвољне тачке у објекту (x, y, z). Стога се (3) може преставити

$$\Delta s_{12}(x',y',D) \approx \int_{v} j\omega(\varepsilon(x,y,z)-\varepsilon_0) E_{inc,x}(x,y,z;x',y',D) E_{inc,x}(x,y,z;x',y',0) dx dy dz.$$
(4)

Под претпоставком да се антене налазе у слободном простору, $E_{inc,x}(\mathbf{r}';\mathbf{r})$ зависи само од међусобног растојања вектора \mathbf{r}' и \mathbf{r} , а не и од њихових апсолутних позиција. Одатле следи да је

$$\Delta s_{12}(x', y', D) \approx \\ \approx \int_{v} j\omega(\varepsilon(x, y, z) - \varepsilon_0) E_{inc, x}(x - x', y - y', z; 0, 0, D) E_{inc, x}(x - x', y - y', z; 0, 0, 0) dx dy dz,$$
(5)

где је

- $E_{inc, x}(x-x', y-y', z; 0, 0, D)$ инцидентно поље у тачки у тачки (x-x', y-y', z) када се генератор предајне антене налази у тачки (0,0, D).
- $E_{\text{inc, }x}(x-x', y-y', z; 0, 0, 0)$ инцидентно поље у тачки(x-x', y-y', z) када се генератор предајне антене налази у тачки (0,0,0).

Ако дефинишемо функције

$$w(x, y, z) = j\omega(\varepsilon(x, y, z) - \varepsilon_0), \qquad (6a)$$

$$g(x, y, z) = E_{\text{inc, }x}(-x, -y, z; 0, 0, D)E_{\text{inc, }x}(-x, -y, z; 0, 0, 0),$$
(66)

пренос између антена (5) може да се напише у облику

$$\Delta s_{12}(x', y', D) \approx \int_{z} dz \iint_{x y} w(x, y, z) g(x' - x, y' - y, z) dx dy.$$
⁽⁷⁾

Са друге стране, конволуциони интеграл се дефинише као

$$h(x') = \int_{x=-\infty}^{\infty} w(x)g(x'-x)dx.$$
(8)

У дводимензионалном случају конволуциони интеграл гласи

$$h(x', y') = \int_{x=-\infty}^{\infty} \int_{y=-\infty}^{\infty} w(x, y) g(x'-x, y'-y) dx dy.$$
(9)

Поређењем (7) и (9) закључујемо да је диференцијални коефицијент трансмисије у облику конволуционог интеграла.

10.3. Подсетник – Фуријеова трансформација

Једнодимензионална просторна Фуријеова трансформација функције w(x) се дефинише изразом

$$W(u) = \int_{-\infty}^{\infty} w(x) e^{-j2\pi u x} dx, \qquad (10)$$

где је *х* дужинска координата, а *и* просторна учестаност. Фуријеова трансформација конволуционог интеграла

$$h(x') = \int_{x=-\infty}^{\infty} w(x)g(x'-x)dx$$
(11)

једнака је

$$H(u) = W(u)G(u), \tag{12}$$

где су W(u) и G(u) Фуријеове трансформације функција w(x) и g(x), респективно.

Фуријеова трансформација функције две променљиве гласи:

$$W(u,v) = \int_{x=-\infty}^{\infty} \int_{y=-\infty}^{\infty} w(x,y) e^{-j2\pi u x} e^{-j2\pi v y} dx dy, \qquad (13)$$

где су u и v просторне учестаности које описују варијације функције w(x, y) дуж x и y-осе респективно. Слично као и у једнодимензионалном случају, Фуријеова трансформације дводимензионалног конволуционог интеграла

$$h(x', y') = \int_{x=-\infty}^{\infty} \int_{y=-\infty}^{\infty} w(x, y) g(x'-x, y'-y) dx dy$$
(14)

једнака је

$$H(u,v) = G(u,v)W(u,v), \tag{15}$$

где су G(u,v) и W(u,v) Фуријеове трансформације функција g(x, y) и w(x, y), респективно.

10.4. Фуријеова трансформација једначине расејања

Фуријеова трансформација (7) по просторним координатама х и у једнака је

$$\Delta \widetilde{S}_{12}(u,v) = \mathcal{F}\left\{\int_{z} dz \int_{x} \int_{y} w(x,y,z) g(x'-x,y'-y,z) dx dy\right\}.$$
(16)

Када се замени редослед Фуријеове трансформације и интеграције, добија се

$$\Delta \widetilde{S}_{12}(u,v) = \int_{z} dz \, \mathscr{F}\left\{ \iint_{x,y} w(x,y,z) g(x'-x,y'-y,z) dx \, dy \right\}.$$
(17)

На основу (14), (15) и (17) следи да је

$$\Delta \widetilde{S}_{12}(u,v) = \int_{z} \widetilde{W}(u,v;z) \widetilde{G}(u,v;z) dz , \qquad (18)$$

где су $\widetilde{W}(u,v;z)$ и $\widetilde{G}(u,v;z)$ Фуријеове трансформације функција w(x, y, z) и g(x, y, z), респективно.

У реалним ситуацијама, мерења се врше у дискретном скупу тачака, (x_k, y_l) , k, l = 1, ..., M, а реконструкција се врши у коначном броју равни $z_n = \text{const}$, n = 1, ..., N. Због тога континуалну Фуријеову трансформацију замењујемо дискретном Фуријеовом трансформацијом. У дискретном облику, (18) гласи

$$\Delta \widetilde{S}_{12}(i,j) = \sum_{n=1}^{N} \widetilde{W}(i,j;z_n) \widetilde{G}(i,j;z_n) \Delta z, \qquad (19)$$

где су сада

$$\widetilde{G}(i,j;z_n) = \sum_{k=1}^{M} \sum_{l=1}^{M} g(x_k, y_l; z_n) e^{-j\frac{2\pi}{M}ik} e^{-j\frac{2\pi}{M}jl}, \ i, j = 1, \dots, M ,$$
(20)

$$\widetilde{W}(i,j;z_n) = \sum_{k=1}^{M} \sum_{l=1}^{M} w(x_k, y_l; z_n) e^{-j\frac{2\pi}{M}ik} e^{-j\frac{2\pi}{M}jl}, \ i, j = 1, \dots, M ,$$
(21)

$$\Delta \widetilde{S}_{12}(i,j) = \sum_{k=1}^{M} \sum_{l=1}^{M} \Delta s_{12}(x_k, y_l) e^{-j\frac{2\pi}{M}ik} e^{-j\frac{2\pi}{M}jl}, \ i, j = 1, \dots, M ,$$
(22)

дискретне Фуријеове трансформације функција g(x, y, z), w(x, y, z) и $\Delta s_{12}(x, y)$, респективно, а Δz резолуција слике у правцу *z*-осе.

Ради добијања боље слике, погодно је да се користе подаци добијени на више фреквенција. У том случају израз (19) постаје

$$\Delta \widetilde{S}_{12}(i,j;f_p) = \sum_{n=1}^{N} \widetilde{W}(i,j;z_n,f_p) \widetilde{G}(i,j;z_n,f_p), \ i,j = 1,\dots,M ,$$
(23)

где је f_p , p = 1, ..., P, скуп фреквенција на којима се врше мерења. (С обзиром да се контраст одређује са тачношћу до мултипликативне константе, Δz је изостављено из израза.) Претпоставимо да се у посматраном фреквенцијском опсегу пермитивност објекта слабо мења. Тада је приближно $\widetilde{W}(i, j; z_n, f_p) \approx \widetilde{W}(i, j; z_n)$ па (23) постаје

$$\Delta \widetilde{S}_{12}(i,j;f_p) = \sum_{n=1}^{N} \widetilde{W}(i,j;z_n) \widetilde{G}(i,j;z_n,f_p), \ i,j = 1,\dots,M \ .$$

$$(24)$$

Скуп једначина (24), формиран за један пар просторних учестаности (*i*, *j*), може се записати у матричном облику

$$\mathbf{s}(i,j) = \mathbf{G}(i,j)\mathbf{w}(i,j), \ i,j = 1,...,M ,$$
(25)

где је

$$\mathbf{s}(i,j) = \begin{bmatrix} \Delta \widetilde{S}_{12}(i,j;f_1) \\ \vdots \\ \Delta \widetilde{S}_{12}(i,j;f_P) \end{bmatrix},$$
(26)

$$\mathbf{G}(i,j) = \begin{bmatrix} \widetilde{G}(i,j;z_1,f_1) & \cdots & \widetilde{G}(i,j;z_N,f_1) \\ \vdots & \ddots & \vdots \\ \widetilde{G}(i,j;z_1,f_P) & \cdots & \widetilde{G}(i,j;z_N,f_P) \end{bmatrix},$$
(27)

$$\mathbf{w}(i,j) = \begin{bmatrix} \widetilde{W}(i,j;z_1) \\ \vdots \\ \widetilde{W}(i,j;z_N) \end{bmatrix}.$$
(28)

Линеарни систем једначина (25) се решава за сваки пар просторних учестаности i, j = 1, ..., M. Једна могућност за добијање стабилног решења је Тихоновљев метод, који је објашњен у одељку 8.5.

Коначно, разлику пермитивности у једној равни добијамо применом инверзне Фуријеове трансформације

$$w(z_n) = \mathcal{F}^{-1}\left\{\widetilde{\mathbf{W}}(z_n)\right\},\tag{29}$$

где је

$$\widetilde{\mathbf{W}}(z_n) = \begin{bmatrix} \widetilde{W}(1,1;z_n) & \cdots & \widetilde{W}(1,M;z_n) \\ \vdots & \ddots & \vdots \\ \widetilde{W}(M,1;z_n) & \cdots & \widetilde{W}(M,M;z_n) \end{bmatrix}.$$
(30)

10.5. Задатак: добијање холографске слике помоћу виртуелног планарног низа

Холографска метода је изведена за случај мерног система који се састоји од предајне и пријемне антене које се заједно крећу тако да растојање између њих остаје исто. Прецизно моделовање таквог система у присуству објекта захтева посебан електромагнетски модел за сваки положај антенског пара. Алтернативно, могуће је направити један модел у коме су сва мерна места попуњена антенама, као што је приказано на слици 2 (виртуелни антенски низ). Пренос између једног пара наспрамних антена у виртуелном антенском низу (приближно) моделује пренос између покретног пара антена када се нађу на том мерном месту. Што је спрега између антена у виртуелном низу мања, то ће слагање између два модела бити боље.

Слика 2. Модел експерименталне поставке у програму WIPL-D.

Ради моделовања виртуелног холографског система, у програму WIPL-D направити два планарна низа полуталасних дипола који су паралелни *x*-оси, као на слици 2. Централна учестаност дипола је f = 10 GHz, а мерења се врше на P = 9 равномерно распоређених учестаности у опсегу $f_{\min} \leq f \leq f_{\min}$, где је $f_{\min} = 0.95f$ и $f_{\max} = 1.05f$. Генератори антена се налазе у тачкама са координатама $(x_k, y_i, 0)$ и (x_k, y_i, D) :

$$x_k = -a + 2a \frac{(k-1)}{M-1}, \ k = 1, \dots, M$$
, (31)

$$y_l = -a + 2a \frac{(l-1)}{M-1}, \ l = 1, \dots, M$$
, (32)

при чему је M = 21, $D = 4\lambda$, $a = 10\lambda$, а $\lambda = c/f = 0,03$ m таласна дужина у ваздуху на централној учестаности. Укупан број антена (мерних позиција) у свакој од равни је $M^2 = 441$. Непознати објекат је лопта полупречника r = 7,5 cm, са центром у тачки $(\lambda, \lambda, D/2)$. Усвојити да је релативна пермитивност лопте $\varepsilon_r = 10$. (Готов модел оbјекаt.iwp налази се у прилогу.) Потом, направити модел идентичан претходном и из њега уклонити објекат (модел niz.iwp из прилога). Покренути симулације и учитати матрице расејања S и S₀ из фајлова obјекаt.adl и niz.adl, респективно, и одредити њихову разлику Δ S. Добијена матрице Δ S је димензија $M^2 \times M^2$ јер садрже параметре расејања између свих могућих антенских парова. Због тога треба издвојити само параметре расејања који се односе на парове наспрамних антена. У расположивим моделима, приступи антена су тако означени да је индекс генератора наспрамне антене која се налази на позицији (x_k, y_l, D) већи за један од индекса њеног пара на на позицији $(x_k, y_l, 0)$. Димензије матрице преноса Δ S₁₂добијене након идвајања корисних елемената су $M \times M$. За потребе рачунања инцидентног поља направити још један WIPL-D модел који се састоји само од предајне и пријемне антене на позицијама (0,0,0) и (0,0,D), респективно (модел Einc.iwp из прилога). Тачке у којима се рачуна инцидентно поље су уједно и тачке претраживања. Стога су пресеци дуж *z*-осе у којима рачунамо блиско поље уједно и пресеци у којима рачунамо реконструкцију објеката. Због једноставности, сматрати да је позиција објекта дуж *z*-осе позната (z = D/2). Усвојити да су координате за прорачун инцидентног (блиског) поља:

$$x_{\min}^{WIPL} = -a \frac{M}{M-1} , \ x_{\max}^{WIPL} = a \frac{M}{M-1} , \ n_x^{WIPL} = 21,$$
$$y_{\min}^{WIPL} = -a \frac{M}{M-1} , \ y_{\max}^{WIPL} = a \frac{M}{M-1} , \ n_y^{WIPL} = 21.$$

$$z_{\min}^{WIPL} = D/2$$
, $z_{\max}^{WIPL} = D/2$, $n_z^{WIPL} = 1$.

Оваквим избором су x и y координате тачака y којима рачунамо инцидентно поље идентичне x и y координатама мерних позиција из модела objekat.iwp. Када је модел готов, покренути симулацију и учитати блиско поље из фајла Einc.nf1.

У програму Matlab/Octave написати програм који:

- учитава матрице расејања из фајлова objekat.ad1 и niz.ad1 и формира разлику те две матрице $\Delta S = S S_0$
- издваја коефицијенте трансмисије између наспрамних антена из целокупне матрице разлике, водећи рачуна о начину индексирања генератора у моделима objekat.iwp и niz.iwp

$$\Delta s_{21}(k,l,p) = s_{21}(x_k, y_l; f_p) - s_{21}^0(x_k, y_l; f_p)$$

• на свакој учестаности рачуна Фуријеову трансформацију диференцијалних коефицијената трансмисије помоћу команде fft2:

$$\Delta \widetilde{\mathbf{S}}_{12}(f_p) = \mathcal{F} \left\{ \begin{bmatrix} \Delta s_{12}(1,1,p) & \cdots & \Delta s_{12}(1,M,p) \\ \vdots & \ddots & \vdots \\ \Delta s_{12}(M,1,p) & \cdots & \Delta s_{12}(M,M,p) \end{bmatrix} \right\},$$
$$\Delta \widetilde{\mathbf{S}}_{12}(:,:,l) = \operatorname{fft2} \{ \Delta \mathbf{S}_{12}(:,:,l) \}$$

• за сваки пар просторних учестаности формира вектор

$$\widetilde{\mathbf{s}}(i, j) = \begin{bmatrix} \Delta \widetilde{\mathbf{S}}_{12}(i, j, f_1) \\ \vdots \\ \Delta \widetilde{\mathbf{S}}_{12}(i, j, f_P) \end{bmatrix}, \ i, j = 1, \dots, M$$

- учитава податке о електричном пољу из фајла Einc.nfl у вишедимензионални низ облика E_x(k,l,n, g, p), k = 1,...,M, l = 1,...,M, n = 1, g = 1, 2, p = 1,...,P, где g означава индекс генератора
- формира матрицу

$$\mathbf{G}(z_n, f_p) = \begin{bmatrix} g(x_1, y_1, z_n, f_p) & \cdots & g(x_1, y_M, z_n, f_p) \\ \vdots & \ddots & \vdots \\ g(x_M, y_1, z_n, f_p) & \cdots & g(x_M, y_M, z_n, f_p) \end{bmatrix},$$

при чему је

 $g(x_k, y_l, z_n, f_p) = E_x(M-k+1, M-l+1, 1, p)E_x(M-k+1, M-l+1, 1, 2, p)$ јер важи $x_{M-k+1} = -x_k$, $y_{M-l+1} = -y_l$, n = 1, $E_{inc} = E_x$

- рачуна дискретну Фуријеову трансформацију матрице $\mathbf{G}(z, f_l)$, $\widetilde{\mathbf{G}}(z, f_p) = \text{fft} 2 \{ \mathbf{G}(z, f_p) \}$
- за сваки пар просторних учестаности издваја вектор

$$\widetilde{\mathbf{g}}(i, j) = \begin{bmatrix} \widetilde{G}(i, j; z, f_1) \\ \vdots \\ \widetilde{G}(i, j; z, f_P) \end{bmatrix}, i, j = 1, \dots, M$$

• рачуна дискретну Фуријеову трансформацију контраста решавањем система једначина

 $\widetilde{\mathbf{w}}(i, j) = \left(\widetilde{\mathbf{g}}(i, j)^{\mathrm{H}} \cdot \widetilde{\mathbf{g}}(i, j)\right)^{-1} \widetilde{\mathbf{g}}(i, j)^{\mathrm{H}} \widetilde{\mathbf{s}}(i, j)$

• коначно, одређује контраст (слику објекта) применом инверзне Фуријеове трансформације

 $\mathbf{w} = ifft2(\mathbf{\tilde{w}}), \mathbf{w} = fftshift(\mathbf{w}).$

Очекивани резултат реконструкције је приказан на слици 3. Прави облик објекта назначен је црном линијом.

Слика 3. Реконструкција непознатог објекта помоћу холографске методе.